共振试验系统的操作原理是基于电磁驱动的机械谐振器的概念。动态载荷是由系统在共振时工作的振动系统生成的。平均力是通过移动带滚珠丝杠驱动的上横梁施加的。
基于设计原理,共振试验系统和共振试验机过去只能用作动态材料试验机,用于测定材料和部件的疲劳寿命,如有限寿命疲劳和长寿命疲劳等。 例如,按照DIN 50100(S-N曲线)在拉伸、压缩、脉冲载荷和交变载荷范围进行高周疲劳试验。
S-N曲线表示在材料断裂之前所能承受的载荷变化的总和。其根据DIN 50100在恒定振幅下施加载荷(也称为S-N试验)从高周疲劳试验中得出,并且分为低周疲劳K、有限寿命疲劳Z和高周疲劳D这几个区域。
从S-N图中,您可以读取特定载荷幅的载荷变化最大次数。 它取决于材料特性、力和载荷施加类型(脉冲压缩载荷、脉冲拉伸载荷或交变载荷)。
在我们的示例中,标称应力幅Sa和循环数N采用的是对数法。在双对数表示中,有限寿命疲劳区域代表一条直线。生成的曲线指定为S-N曲线。
低周疲劳强度通过低周疲劳(LCF)试验测定。在这个范围中,材料和部件所受的应力达到在循环过程中发生塑性变形的程度,并且材料在早期阶段失效。Coffin-Manson模型通常用于更详细的表示。
有限寿命疲劳Z是循环数介于104到2·106之间的范围(取决于材料)。在有限寿命疲劳范围内,试样总是达到失效标准条件(如裂纹或断裂)。
有限寿命疲劳强度通过高周疲劳(HCF)试验测定。试验结束后,测试结果是一个载荷幅下的载荷循环数。
高周疲劳D表示材料在循环加载期间无明显疲劳或失效迹象的情况下能够承受的应力极限。高周疲劳在高周疲劳试验期间测定。
在高周疲劳区域,确定了有限的循环数NG。如果试样在达到此有限的循环数之前失效,则视为“失效”。在高周疲劳试验期间,能够承受1,000,000次以上循环而无断裂的材料被视为抗疲劳材料。
在根据DIN 50100 / ASTM E466-15 / ISO 1099进行的高周疲劳试验(也称为S-N试验)中,通过周期性变化的(循环)载荷对材料或部件施加应力。 ASTM D3479介绍了对复合材料的试验。
在高周疲劳试验中,载荷幅和平均载荷在单级疲劳试验中是恒定的。 根据载荷幅的大小,可以在试样失效前以不同的频率施加。
该试验定义了特定的循环数(循环数阈值)。如果试样达到此循环数阈值而无可识别的失效,则认为其是耐用的或称为跳动试样。
在每次高周疲劳试验中,循环载荷的平均应力、高应力和低应力是恒定的。对于同一S-N曲线上的试验,要么只改变平均应力,要么只改变高应力与低应力之比。
低周疲劳K:高载荷幅会在试样上产生塑性应变,并导致试样在进行低数量的循环后失效。DIN 50100标准中不涉及低周疲劳区域。
断裂力学检测运行条件(功能、疲劳寿命...)下部件或材料中的裂纹增长、裂纹扩展和裂纹止裂性。考虑到应力-时间函数,测定的材料特性会影响部件的设计和生产。
在许多行业部门(如航空航天或汽车工程)中,断裂力学都发挥着重大作用。通过估算受裂纹影响部件(或材料)的寿命或剩余使用寿命,可以有针对性地定义检查和维护间隔。
在线弹性断裂力学(适用于脆性材料)中,材料行为属于线弹性,直到发生无变形断裂(不稳定的裂纹扩展)。LEFM的一个经典特性值是K1C,用于描述裂纹张开模式1期间的临界(C)应力强度(K)。
如果材料发生延展性失效,即裂纹尖端发生塑性变形,则屈服断裂力学概念适用。此处共有两种定义,一种是通过裂纹尖端环境中储存的能量(J积分概念)测定特性值,另一种是通过裂纹尖端扩展(CTOD“裂纹尖端张开位移”)测定特性值。
临界应力强度因子K1C描述材料抵抗裂纹扩展的能力。 应力强度因子也称为断裂强度。 ASTM E399标准描述了在恒定振幅的循环载荷下测定断裂力学材料特性值。
ASTM E399标准用于测定临界应力强度因子K1C,着手应对的是裂纹扩展曲线的区域III。
K1C测定通常在脆性材料上进行。首先,根据ASTM E399标准,通过预制裂纹在试样中产生规定的裂纹。在距达到规定裂纹长度2.5%的位置,减小应力强度。
在下一步中,以恒定速率拉动试样,直到其断裂并达到KQ值。试验后,根据试样宽度、裂纹长度和材料的规定塑性延伸强度设置测定的KQ值。如果该比率满足标准中规定的最低有效性标准,则将KQ声明为有效的K1C值。
部件中或部件表面上的生产相关缺陷(每个部件都有)代表裂纹核,它们在载荷作用下促进了裂纹的形成。这些缺陷可转化成裂纹,即可在技术上记录的宏观材料损伤。这称为裂纹萌生阶段。
在随后的裂纹扩展阶段,裂纹继续存在于部件中,直到裂纹尖端前面的应力强度K超过临界值,然后部件会突然失效。
在单调或循环加载的部件中,裂纹以稳定(临界前状态)或不稳定(临界状态)形式扩展。对于脆性材料,可指定临界应力幅值K1C,此值的测定请参见ASTM E399。如果不断增长的裂纹的应力强度K低于K1C,则裂纹稳定扩展,并可在移除载荷后随时停止。如果高于K1C值,则裂纹会不稳定扩展,而且部件将会突然失效。
断裂力学中使用不同的试样形状。形状的选择取决于标准和待测试的可用材料。标准化的试样形状在标准中加以描述,以使测试结果具有可比性。
断裂力学中最常用的试样形状是紧凑型拉伸试样。它用于根据ASTM E399/E647标准进行测试。